Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Introduction to Solid State Physics for Materials Engineers

 E-Book
Sofort lieferbar | Lieferzeit: Sofort lieferbar I
ISBN-13:
9783527831586
Veröffentl:
2021
Einband:
E-Book
Seiten:
304
Autor:
Emil Zolotoyabko
eBook Typ:
PDF
eBook Format:
Reflowable E-Book
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

A concise, accessible, and up-to-date introduction to solid state physics Solid state physics is the foundation of many of today's technologies including LEDs, MOSFET transistors, solar cells, lasers, digital cameras, data storage and processing. Introduction to Solid State Physics for Materials Engineers offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant branch of science for materials engineers. The text links the fundamentals of solid state physics to modern materials, such as graphene, photonic and metamaterials, superconducting magnets, high-temperature superconductors and topological insulators. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. The text covers a wide range of relevant topics, including propagation of electron and acoustic waves in crystals, electrical conductivity in metals and semiconductors, light interaction with metals, semiconductors and dielectrics, thermoelectricity, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, chemistry and physics, Introduction to Solid State Physics for Materials Engineers is an important guide to help foster an understanding of solid state physics.
Einführung in die Festkörperphysik für Studenten der Werkstofftechnik, Materialwissenschaften und verwandter technischer Fachrichtungen. Dieses zugängliche Lehrbuch ist ausreichend detailliert, ohne dabei zu theorielastig zu sein, und stellt die Verbindung zu heutigen Technologien her.
ContentsPreface xiIntroduction xiii1 General Impact of Translational Symmetry in Crystals on Solid State Physics 11.1 Crystal Symmetry in Real Space 31.2 Symmetry and Physical Properties in Crystals 91.3 Wave Propagation in Periodic Media and Construction of Reciprocal Lattice 131.A Symmetry Constraints on Rotation Axes 181.B Twinning in Crystals 202 Electron Waves in Crystals 232.1 Electron Behavior in a Periodic Potential and Energy Gap Formation 232.2 The Brillouin Zone 282.3 Band Structure 312.4 Graphene 352.5 Fermi Surface 402.A Cyclotron Resonance and Related Phenomena 433 Elastic Wave Propagation in Periodic Media, Phonons, and Thermal Properties of Crystals 513.1 Linear Chain of the Periodically Positioned Atoms 513.2 Phonons and Heat Capacity 563.3 Thermal Vibrations of Atoms in Crystals 593.4 Crystal Melting 603.5 X-ray and Neutron Interaction with Phonons 613.5.1 Debye-Waller Factor 653.6 Lattice Anharmonicity 673.7 Velocities of Bulk Acoustic Waves 693.8 Surface Acoustic Waves 723.A Bose's Derivation of the Planck Distribution Function 734 Electrical Conductivity in Metals 754.1 Classical Drude Theory 764.2 Quantum-Mechanical Approach 774.3 Phonon Contribution to Electrical Resistivity 804.4 Defects' Contributions to Metal Resistivity 824.A Derivation of the Fermi-Dirac Distribution Function 845 Electron Contribution to Thermal Properties of Crystals 875.1 Electronic Specific Heat 875.2 Electronic Heat Conductivity and the Wiedemann-Franz Law 925.3 Thermoelectric Phenomena 945.4 Thermoelectric Materials 986 Electrical Conductivity in Semiconductors 1056.1 Intrinsic (Undoped) Semiconductors 1056.2 Extrinsic (Doped) Semiconductors 1106.3 p-n Junction 1116.4 Semiconductor Transistors 1176.A Estimation of Exciton?s Radius and Binding Energy 1207 Work Function and Related Phenomena 1237.1 Work Function of Metals 1237.2 Photoelectric Effect 1267.2.1 Angle-Resolved Photoemission Spectroscopy (APRES) 1267.3 Thermionic Emission 1287.4 Metal-Semiconductor Junction 1317.A Image Charge Method 1337.B A Free Electron Cannot Absorb a Photon 1348 Light Interaction with Metals and Dielectrics 1358.1 Skin Effect in Metals 1378.2 Light Reflection from a Metal 1388.3 Plasma Frequency 1408.4 Introduction to Metamaterials 1418.5 Structural Colors 1488.A Acoustic Metamaterials 1509 Light Interaction with Semiconductors 1559.1 Solar Cells 1559.1.1 The Grätzel Cell 1599.1.2 Halide Perovskite Solar Cells 1619.2 Solid State Radiation Detectors 1629.2.1 Infrared Detectors 1649.3 Charge-Coupled Devices (CCDs) 1679.4 Light-Emitting Diodes (LEDs) 1689.5 Semiconductor Lasers 1709.6 Photonic Materials 17310 Cooperative Phenomena in Electron Systems: Superconductivity 17710.1 Phonon-Mediated Cooper Pairing Mechanism 17810.2 Direct Measurements of the Superconductor Energy Gap 18210.3 Josephson Effect 18410.4 Meissner Effect 18510.5 SQUID 18810.6 High-Temperature Superconductivity 18910.A Fourier Transform of the Coulomb Potential 19210.B The Josephson Effect Theory 19310.C Derivation of the Critical Magnetic Field in Type I Superconductors 19511 Cooperative Phenomena in Electron Systems: Ferromagnetism 19711.1 Paramagnetism and Ferromagnetism 19811.2 The Ising Model 20411.3 Magnetic Structures 20511.4 Magnetic Domains 20711.5 Magnetic Materials 21011.6 Giant Magnetoresistance 21111.A The Elementary Magnetic Moment of an Electron Produced by its Orbital Movement 21411.B Pauli Paramagnetism 21411.C Magnetic Domain Walls 21612 Ferroelectricity as a Cooperative Phenomenon 21912.1 The Theory of Ferroelectric Phase Transition 22312.2 Ferroelectric Domains 22712.3 The Piezoelectric Effect and Its Application in Ferroelectric Devices 23012.4 Other Application Fields of Ferroelectrics 23313 Other Examples of Cooperative Phenomena in Electron Systems 23713.1 The Mott Metal-Insulator Transition 23713.2 Classical and Quantum Hall Effects 24113.3 Topological Insulat

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.